Selective growth of gold nanoparticles onto tellurium nanowires via a green chemical route†

Zong-Hong Lin, Yang-Wei Lin, Kun-Hong Lee and Huan-Tsung Chang*

Received 30th January 2008, Accepted 19th March 2008
First published as an Advance Article on the web 9th April 2008
DOI: 10.1039/b801696h

In this paper, we describe a green chemical route for highly selective growth of Au tips onto Te nanowires (NWs). We carefully selected the pH values to vary the redox reaction potential between Au³⁺ and Te NWs, allowing control of nucleation and growth rates of Au nanoparticles (NPs). In the presence of 10 mM CTAB, we obtained Au-Te and Au-Te-Au NWs at pH 4.0 and 5.0, respectively. Photovoltage data revealed that the resistance of the Te NW-based thin films is controlled by the degree of deposition of Au NPs. We suspect that Au-Te and/or Au-Te-Au NWs hold great potential for use in the fabrication of electronic devices.

Introduction

The physical and chemical properties of nanomaterials are dependent on their composition and morphology. For example, anisotropic semiconductor nanostructures having metal tips on one or two of their termini have been prepared as potential materials for use in the fabrication of electronic devices. The presence of metal tips on nanomaterials is also desirable because it allows the anchoring of organic molecules or biomolecules and, hence, the sensing of various targets of interest. The symmetric growth of Au tips through the dodecylamine-mediated reduction of AuCl₃ onto CdSe nanorods and tetrapods has been demonstrated in the presence of didecyldimethylammonium bromide. At a Au salt-to-anisotropic nanostructure molar ratio of 15 000 or more, one-ended growth of Au tips onto CdSe nanorods or tetrapods has been demonstrated to occur through Ostwald ripening. The same idea has been applied to the growth of Au tips onto CdS nanorods. Two-step approaches have also been demonstrated for the growth of metal tips on nanomaterials. For instance, PbSe and CdTe nanocrystals have been grown selectively onto the tips of CdSe and CdS nanorods; those tips were subsequently oxidized by Au ions in the presence of surfactant to form Au tips on one end or both ends of the nanorods. Although these methods allow the preparation of metal tips on nanorods, it remains a challenge to prepare metal tips with high yield and purity on nanomaterials having lengths greater than 100 nm. Moreover, most of the approaches described previously have been conducted in an organic phase at high temperature, i.e., against the principles of “green chemistry”.

In this paper, we describe the development of a green-chemical route toward the selective growth of Au tips onto Te nanowires (NWs), using the redox reaction between Au³⁺ and Te NWs to deposit Au atoms in the form of Au nanoparticles (NPs) on the end(s) of Te NWs. In a previous study, we prepared Au-Te nanodumbbells, Au-Te nanopeapods, and Au pearl-necklace nanomaterials by carefully controlling the reaction time. Unfortunately, time control does not allow the growth of Au NPs in certain sizes or in desired positions on Te NWs. In our present study, careful control over the pH allowed us to vary the redox reaction potential between Au³⁺ and the Te NWs and, thus, control the rate of nucleation and growth of the Au NPs. With this approach we prepared Au-Te (one Au tip) and Au-Te-Au (two Au tips) NWs in high yield and purity. We found that controlling the deposition of Au NPs onto Te NWs provided nanomaterials with a range of conductivities.

Experimental

Materials

Sodium dodecyl sulfate (SDS, 99%) and hexadecyltrimethylammonium bromide (CTAB, 99%) were obtained from Acros. Sodium tetrachloroaurate dihydrate (99%) was obtained from Aldrich. Tellurium dioxide (99.9%) and hydrazine monohydrate (80%) were purchased from Showa. Deionized water from a Milli-Q ultrapure (18.2 MΩ cm) system was used in this study.

Synthesis of Te NWs

Two differently sized Te NWs (lengths/diameters: 420/30 and 950/40 nm) were prepared through the reduction of tellurium dioxide with hydrazine and the deposition of Te atoms (either reduced from telluride ions or dissolved from amorphous tellurium NPs) onto trigonal Te nanocrystallites. Typically, hydrazine (50 mL) was added slowly to a beaker containing tellurium dioxide (0.16 g) at room temperature under constant magnetic stirring. The solution changed from colorless to blue after 40 min, indicating the formation of Te NWs. Reaction times of 60 and 120 min provided the 420 and 950 nm Te NWs, respectively. The reactions were terminated by diluting the mixtures 10-fold with 10 mM SDS. Prior to use in the preparation of Au-Te and Au-Te-Au NWs, the as-prepared Te NWs were subjected to a centrifugation/wash cycle to remove most of the matrix, including SDS and hydrazine.

† Electronic supplementary information (ESI) available: TEM images and UV-Vis absorption spectra of Au-Te NWs. See DOI: 10.1039/b801696h

Department of Chemistry, National Taiwan University, Taipei, Taiwan. E-mail: changht@ntu.edu.tw; Fax: +011-886-2-33661171; Tel: +011-886-2-3366171

This journal is © The Royal Society of Chemistry 2008
Selective growth of Au NPs

Through a redox reaction between Au$^{3+}$ ions and the Te NWs, Au atoms were deposited to form Au NPs on the end(s) of Te NWs, while TeO$_3^{2-}$ ions were formed and released into the bulk solution. In a typical synthesis, the Te NWs were redispersed in 10 mM CTAB; after 30 min, 0.1 M HCl was added to the mixture to adjust the pH to a desired level (pH 4.0 for one-ended growth; pH 5.0 for double-ended growth). After 1 min, 10 mM aqueous sodium tetrachloroaurate (80 μL) was added to each solution and the mixture maintained at room temperature for 1 h to complete the reaction.

Photovoltaic measurements of Te NW-, Au-Te NW-, and Au-Te-Au NW-based thin films

Prior to measurements, the NWs (100 mL) were centrifuged at 6000 rpm for 10 min and the pellets redispersed in deionized water (2 mL). The solutions were then added dropwise onto fluorine-doped tin oxide (FTO) glass and dried at room temperature. Counter electrodes were prepared by dropping Pt NPs (synthesized using the polyol method) onto FTO glass and then sintering at 450 °C for 30 min. Each FTO glass and a counter electrode were sealed with a spacer to fabricate a sandwiched device. Photovoltaic measurements were conducted using an Oriel 450 W Xe Arc lamp, a high-pass filter (725 nm), and a Keithley 2400 source meter.

Characterization

JEOL-1200EX II and FEI Tecnai-G2-F20 TEMs were used to measure the sizes and shapes of the prepared nanomaterials. EDX analyses were used to confirm the compositions of the prepared nanomaterials. XRD measurements were performed using a PANalytical X’Pert PRO diffractometer and Cu Kα radiation (λ = 0.15418 nm); the samples were prepared on glass substrates. UV-Vis absorption spectra of the colloids were recorded using a double-beam UV-Vis spectrophotometer (Cintra 10e, GBC).

Results and discussion

Fig. 1 displays the time evolution of the one-ended growth of Au NPs on Te NWs having lengths and diameters of 420 ± 60 nm and 30 ± 4 nm, respectively. After redox reactions between Au$^{3+}$ and Te NWs at pH 4.0 for 30, 60, and 120 min, we obtained Au NPs having diameters of 20 ± 2 nm (Fig. 1B), 50 ± 4 nm (Fig. 1C), and 70 ± 5 nm (Fig. 1D), respectively, on only one end of the Te NWs. The final solution pH value was 3.9. From an analysis of 100 Au-Te NWs, we found that the sizes of the Au NPs at the two ends were almost identical (to within 2 nm); such homogeneity suggests that the Au NPs grew simultaneously. The size distribution of the Au NPs on the ends of

Fig. 1 TEM images of Au-Te NWs obtained from Te NWs (length: 420 ± 60 nm; diameter: 30 ± 4 nm) after reaction times of (A) 0, (B) 10, (C) 30, and (D) 60 min.
Au-Te-Au NWs (RSD = 25%; n = 100) was slightly broader than that of the Au-Te NWs (RSD = 12%; n = 100). Further increasing the reaction mixture’s pH to 6.0 resulted in smaller Au NPs (average diameter: 30 ± 7 nm) on the ends of the Te NWs (Fig. 3B). When we performed the procedure in solutions at values of pH ranging from 7.0 to 9.0, the Au atoms deposited at various positions along the Te NWs to form Au-Te nanopeapods (ESI† Fig. S2). These results indicate that the pH was an important factor that controlled the deposition of the Au NPs on the Te NWs. Upon increasing the pH, the rate (potential) of the redox reaction between Au$^3+$ and Te NWs increases:

$$4\text{Au}^3+ + 3\text{Te} + 6\text{H}_2\text{O} \rightarrow 4\text{Au} + 3\text{TeO}_2 + 12 \text{H}^+$$

As a result, the rate of formation of Au seeds increases. At high values of pH, smaller-sized Au NPs deposited on the Te NWs without positional control. In contrast, larger Au NPs deposited selectively on the end(s) of the Te NWs at low pH. Next, we investigated the role played by CTAB during the preparation of the Au-Te NWs at pH 4.0. We suspected that CTAB bilayers protected the longitudinal edges of Te NWs, so that the Au ions had better access to the end(s) where, consequently, the Au NPs deposited favorably. To test this hypothesis, we prepared Au-Te nanomaterials at various concentrations of CTAB (0.1–10 mM). At concentrations less than 1 mM, Au atoms were not deposited selectively onto the end(s), as the TEM images in Fig. 3C and D reveal. This finding supports our notion that CTAB adsorbs preferentially onto the longitudinal edges of Te NWs. We point out that a cation exchange process was conducted to prepare CdS–Ag$_2$S nanorods.13

Te is a semiconductor having a band gap of 0.3 eV, and which can be subjected to photostimulated electron transfer under irradiation in the near-IR region. A Te NW-based thin film provided a photoresponse current which is 1.5 times higher than that in the off state.8 The current ratio between light on and off states for a thin film of Te NWs and Au NPs was lower than that of the Te NW-based thin film. To investigate the photoresponse behavior of the prepared nanomaterials, we performed photo-voltaic measurements of the Te NW-, Au-Te NW-, and Au-Te-Au NW-based thin films. The current–voltage (I–V) curves in Fig. 4A reveal the semiconductive properties of a thin film of Te NWs that have lengths and diameters of 950 ± 160 and 40 ± 5 nm, respectively. The current increased to ca. 2.6 μA at a biased voltage of 3 V when we exposed the Te NW-based thin film to light (>725 nm). The current that flowed when the light was on was ca. 13 times higher than that in the dark. The resistances of the Au-Te NW- and Au-Te-Au NW-based thin films were both lower than that of the Te NW-based thin film (Fig. 4B and C). The differential current of the Au-Te-Au NW-based thin film in
Conclusion

In summary, we have developed a green-chemical route for the growth of Au NPs onto Te NWs. By varying the pH, we controlled the rate of the redox reaction between Au(III) and the Te NWs and, thus, the rate of formation of the Au seeds. In the presence of 10 mM CTAB, we obtained Au-Te and Au-Te-Au NWs and, thus, the rate of formation of the Au seeds. In the presence of 10 mM CTAB, we obtained Au-Te and Au-Te-Au NWs and, thus, the rate of formation of the Au seeds.

Acknowledgements

This study was supported by the National Science Council of Taiwan under contracts 96-2627-M-002-013 and 96-2627-M-002-014.

References

